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Abstract. We solved the problem of finding longitudinal acoustic directions of monoclinic media using the
eliminant method. By extending Khatkevich’s approach and using the Bezout theorem, we proved that the
number of longitudinal normals for mechanically stable monoclinic media can not be larger than 13. Both
longitudinal normals (n1, n2, n3) lying in and out of plane perpendicular to the two-fold axis (n3 �= 0) of
monoclinic media are considered. Closed-form equations for ratios x = n1/n3 y = n2/n3 are derived and
exactly solved by the eliminant method. With the help of this method, we show that in the case of the
CDP (CsH2PO4) crystal, the number of longitudinal normals equals three. Their components are given.
For media of higher symmetries (rhombic, trigonal, tetragonal, hexagonal and cubic), our approach yields
well-known results obtained mainly by Borgnis and Khatkevich. For triclinic elastic media, we proved that
the number of degenerate directions can not be greater than 132.

PACS. 43.40.+s Structural acoustics and vibration – 62.30.+d Mechanical and elastic waves; vibrations

1 Introduction

Longitudinal normals are directions in anisotropic elastic
media, along which the pure longitudinal and pure trans-
verse waves can propagate. The number of these axes and
their spatial directions are of importance for the exact de-
termination of elastic constants of media. For this reason
they were investigated for a number of years [1–10].

Acoustic waves with at least two phase velocities equal
propagate in so called degenerate directions. Please note
that directions along which waves with at least two phase
velocities equal propagate are also sometimes called acous-
tic axes or singularities [8]. However in this article we will
use the term degenerate direction.

Khatkevich developed a method of establishing the
longitudinal normals and degenerate directions [3,9,10].
He estimated the number of longitudinal normals and de-
generate directions for elastic media of all symmetries, ex-
cept triclinic ones. Helbig [10] studied triclinic media and
found that the number of longitudinal normals is equal
to 13.

In a previous paper one of us applied the method of
eliminants to the problem of establishing longitudinal nor-
mals for triclinic media [11]. In particular, it was shown
that for triclinic media, the number of longitudinal nor-
mals is not greater than 16. Two univariate polynomial
equations were obtained, which generally can be solved
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only numerically. An example, namely the oligoclase crys-
tal, was considered.

Our method can be treated as an extension of the
Khatkevich method. Namely, to the set of equations ob-
tained from the condition of existence of longitudinal axes,
we apply the standard and powerful method of elimi-
nants [12]. In the Khatkevich approach, this condition is
transformed to the set of rather complicated vectorial re-
lations. The proposed method of determination of longitu-
dinal normals can be used to assist in identifying the crys-
tallographic symmetry in situations where other methods
(e.g. X-ray difractometry) have led to uncertainties or am-
biguities [13].

In this paper we apply the method of eliminants to
monoclinic elastic media. Equations determining these
axes in the case of media more symmetric than mono-
clinic and triclinic are well-known, and we checked that
our methods give the same results [14]. The eliminant
method is based on theorems of algebra of polynomials.
For this reason, it is well suited for construction of algo-
rithms of numerical calculations. This allows us to modify
our program, the algorithm of which was based on the
Euler rotations [15]. Designing our previous program, we
used an observation made by Fedorov [8] that in the co-
ordinate system in which the Z axis is directed along a
longitudinal normal the elastic constants C35, C45 have to
vanish. Consequently, we rotated the sample until these
components of Ĉ vanished, i.e., we considered all sim-
ilarity transformations generated by the Euler rotations,
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which yield a matrix Ĉ with C35 = 0, C45 = 0. In the next
step, we checked which of the longitudinal normals are
the symmetry axes [15]. The eliminant method provides
us with a more flexible and systematic tool of searching
for longitudinal normals.

Furthermore, we consider here another interesting and
not yet solved problem, namely in the case of triclinic
media, we look for the number of degenerate directions.
We proved that their number can not be greater than 132.

2 Equations for longitudinal normals
for elastic media of an arbitrary elastic
symmetry

The elastic and acoustic properties of crystalline bodies
are defined by the mass density ρ and a set of elements
Cαµ,βν (α, β, µ, ν = 1, 2, 3) of a matrix Ĉ, representing
the tensor of elastic constants in a chosen laboratory co-
ordinate system. Assume that a plane wave propagates in
the direction n = (n1, n2, n3). In the chosen coordinate
system, the acoustical tensor Γ̃ (n) is represented by the
matrix Γ̂ (n), with elements

[
Γ̂ (n)

]
αβ

= Γαβ(n) = ρ−1
3∑

µ,ν=1

nµ Cαµ,βν nν . (1)

Along a longitudinal normal nl, one pure longitudinal
and two pure transverse waves propagate [8]. This means
that the vector of propagation nl is the eigenvector of the
acoustical tensor Γ̃ [9]

Γ (nl)nl = c2 nl, (2a)

or for components of nl

[
n

(1)
l , n

(2)
l , n

(3)
l

]
=


 1

c2

3∑
j=1

Γ1jn
(j)
l ,

1
c2

3∑
j=1

Γ2jn
(j)
l ,

1
c2

3∑
j=1

Γ3jn
(j)
l


 , (2b-d)

where c is a positive number. Equations (2b–d) imply that

∑3
j=1 Γ1jn

(j)
l∑3

j=1 Γ3jn
(j)
l

=
n

(1)
l

n
(3)
l

,

∑3
j=1 Γ2jn

(j)
l∑3

j=1 Γ3jn
(j)
l

=
n

(2)
l

n
(3)
l

·

By making substitutions x = n1/n3, y = n2/n3 (n3 �= 0),
the above set of equations for triclinic media takes the
following form:

P
(1)
tricl(x, y) = A

(t)
0 (y) + A

(t)
1 (y)x + A

(t)
2 (y)x2

+ A
(t)
3 (y)x3 + A

(t)
4 (y)x4, (3a)

P
(2)
tricl(x, y) = B

(t)
0 (y) + B

(t)
1 (y)x + B

(t)
2 (y)x2 + B

(t)
3 (y)x3,

(3b)

where Aα(y), Bα(y) (α = 0, 1, 2, 3) are polynomials of a
variable y

A
(t)
0 (y) = C35 + (2C45 + C36)y+(2C46 + C25)y2+C26y

3,

A
(t)
1 (y) = (C13 + 2C55 − C33) + (4C56 + 2C14 + 3C34)y

+ (2C66 + C12 − 2C44 − C23)y2 − C24y
3,

A
(t)
2 (y) = (3C15 − 3C35) + (3C16 − 4C45 − 2C36)y

− (2C46 + C25)y2,

A
(t)
3 (y) = (C11 − C13 − 2C55) − (2C56 + C14)y,

A
(t)
4 (y) = −C15. (4a)

B
(t)
0 (y) = C34 + (2C44 + C23 − C33)y + (3C24 − 3C34)y2

+ (C22 − 2C44 − C23)y3 − C24y
4,

B
(t)
1 (y) = (2C45 + C36) + (2C25 + 4C46 − 3C35)y

+ (3C26 − 2C36 − 4C45)y2 − (2C46 + C25)y3,

B
(t)
2 (y) = (2C56 + C14) + (C12 − 2C55 − C13 + 2C66)y

− (2C56 + C14)y2,

B
(t)
3 (y) = C16 − C15y. (4b)

One can obtain polynomials P1(x, y), P2(x, y) for media
of higher symmetry by reducing accordingly the number
of non-vanishing independent elastic constants.

We shall solve the set of bivariate polynomial equations

P
(1)
tricl(x, y) = 0, P

(2)
tricl(x, y) = 0, (5a, b)

by the method of eliminants [12]. Now we briefly describe
this method in the case of general case of triclinic media.
The eliminant Etricl(y) of equations (5) is the following
determinant:

Etricl(y) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A4(y) A3(y) A2(y) A1(y) A0(y) 0 0

0 A4(y) A3(y) A2(y) A1(y) A0(y) 0

0 0 A4(y) A3(y) A2(y) A1(y) A0(y)

B3(y) B2(y) B1(y) B0(y) 0 0 0

0 B3(y) B2(y) B1(y) B0(y) 0 0

0 0 B3(y) B2(y) B1(y) B0(y) 0

0 0 0 B3(y) B2(y) B1(y) B0(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

(6)

The necessary condition for the existence of solutions of
equations (5a, b) is that

Etricl(y) = 0. (7)



A. Duda and T. Paszkiewicz: Number of longitudinal normals and degenerate directions 329

The order of equation (7) is generally higher than 4,
and therefore it can only be solved numerically. After sub-
stitution of the roots of the eliminant to equations (5a, b),
we obtain a pair of equations for x.

Clearly, we deal with two univariate polynomial equa-
tions. Assume that they are respectively of degree m
and p, and that the number of their solutions is finite.
The Bezout theorem states that the number of real solu-
tions of this set can not be larger than the product m×p.

3 Determination of number of degenerate
directions for triclinic media

Denote the direction of degenerate direction by na. We
shall prove a lemma.

Lemma 1

If a continuous bivariable polynomial function F (x, y) of
the degree p defined on R2 has finite number of zeros, then
this number can not be larger than p(p − 1).
Proof: If in a set of values of F (x, y) one can find at least
one pair of numbers with different signs, then the equation

F (x, y) = 0, (8)

has infinite number of roots. Indeed, if a continuous
function F (x, y) is negative for (x(−)

0 , y
(−)
0 ); then one

can find a circular region K− for which F (x, y) < 0.
Similarly, if a continuous function F (x, y) is positive for
(x(+)

0 , y
(+)
0 ), then one can find a circular region K+ for

which F (x, y) > 0. K− and K+ are disjoint. One may
find infinitely many intervals joining points of K−, K+.
Since F (x, y) is continuous on R2, on each of these inter-
vals a point exists for which F vanishes. Thus, equation (8)
has infinitely many roots.

This means that if equation (8) has a finite number
of roots, the continuous function F (x, y) is nonnegative
or nonpositive in R2. Therefore, for each root of equa-
tion (8), F (x, y) attains a local extremum. These roots
can be found from conditions

F (x, y) = 0; ∂F (x, y)/∂x = 0. (9a, b)

We obtained the set of two polynomial equations: (9a) is of
the degree p, whereas (9b) at most of (p−1) degree. Since
we assumed that F (x, y) has finite number of zeros, the set
of bivariate polynomial equations has a finite number of
solutions. From the Bezout theorem it follows that their
number cannot be greater than p(p − 1). Therefore, we
have proven the lemma.

Consider an elastic wave propagating in a direction n.
In the chosen Cartesian coordinate system, n has compo-
nents n1, n2, n3 and the phase velocities are eigenvalues
of the suitable propagation matrix Γ̂ (n1, n2, n3). If n is
a degenerate direction, then at least two phase velocities

cj(n) (j = 0, 1, 2) are equal. The characteristic equation
for cj(n) has the following form:

c3 − [
Γ11(n) + Γ22(n) + Γ33(n)

]
c2 +

[
Γ11(n)Γ22(n)

+Γ11(n)Γ33(n)+Γ22(n)Γ33(n)−Γ 2
23(n)−Γ 2

12(n)−Γ 2
13(n)

]
c

+
[
Γ11(n)Γ 2

23(n) + Γ33(n)Γ 2
12(n) + Γ22(n)Γ 2

13(n)

− Γ11(n)Γ22(n)Γ33(n) − 2Γ12(n)Γ13(n)Γ23(n)
]

= 0. (10)

Equation (10) has a double root for n directed along
each na. A cubic equation has double root, if, and only
if, its discriminant ∆(n) vanishes.

For equation (10) the discriminant reads

∆(n1, n2, n3) = q2(n1, n2, n3) +
4
27

p3(n1, n2, n3), (11)

where

q(n1, n2, n3) = (Γ11Γ22Γ33−Γ11Γ
2
23−Γ33Γ

2
12+2Γ12Γ13Γ23

− Γ22Γ
2
13) − 2(Γ11 + Γ22 + Γ33)3/27 − (Γ11 + Γ22 + Γ33)

× [
Γ 2

23 + Γ 2
12 + Γ 2

13 − Γ11Γ22 − Γ11Γ33 − Γ22Γ33

]
/3,(12a)

and

p(n1, n2, n3) = −(Γ11 + Γ22 + Γ33)2/3

− (Γ 2
23 + Γ 2

12 + Γ 2
13 − Γ11Γ22 − Γ11Γ33 − Γ22Γ33). (12b)

Each element of Γ̂ (n1, n2, n3) is a homogeneous polyno-
mial function of variables n1, n2, n3 of the second order.
On the other hand, the discriminant (11) is a homoge-
neous function of variables Γij(n1, n2, n3) (i, j = 1, 2, 3) of
the sixth order. Hence, ∆(n) is a homogeneous function of
n1, n2, n3 of the twelfth order. If the number of degener-
ate directions is finite, then one can find a plane without
degenerate directions. One may choose a Cartesian coor-
dinate system where this plane is perpendicular to z axis.
In this coordinate system, n3 �= 0. In variables x = n1/n3,
y = n2/n3, the discriminant ∆(n) is a function of x and y
of the twelfth order (m = 12). From the Lemma 1, it fol-
lows that the number of degenerate directions of an elastic
medium cannot be greater than 11 × 12 = 132.

4 Monoclinic media: Longitudinal normals
lying outside of the symmetry plane

Elastic media which contain only one symmetry axis of the
second order C2 are called monoclinic media. They also
contain one symmetry plane perpendicular to this symme-
try axis. For monoclinic media, C14 = C24 = C34 = C15 =
C25 = C35 = C46 = C56 = 0. Longitudinal directions of
monoclinic media were investigated by Khatkevich [9]. He
stated that media with this symmetry can contain longi-
tudinal axes the number of which vary from 3 to 17. For
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monoclinic media, one has

A
(m)
0 (y) = (2C45 + C36)y + C26y

3,

A
(m)
1 (y) = (C13 + 2C55 − C33)

+ (2C66 − 2C44 − C23 + C12)y2,

A
(m)
2 (y) = (3C16 − 4C45 − 2C36)y,

A
(m)
3 (y) = (C11 − 2C55 − C13), (13a-d)

B
(m)
0 (y) = (2C44 + C23 − C33)y + (C22 − C23 − 2C44)y3,

B
(m)
1 (y) = (2C45 + C36) + (3C26 − 2C36 − 4C45)y2,

B
(m)
2 (y) = (2C66 + C12 − C13 − 2C55)y,

B
(m)
3 (y) = C16. (14a-d)

Two equations

P
(1)
monocl(x, y) = 0, P

(2)
monocl(x, y) = 0, (15a, b)

have solutions if

Emonocl(y) = 0. (16)

The Bezout theorem applied to equations (15) implies that
maximal number of longitudinal normals which lie outside
the plane n3 = 0 equals 9. Fedorov has proven that each
symmetry axis is also the longitudinal normal. Thus, in
the considered case, the two-fold symmetry axis is a lon-
gitudinal normal. The existence of a twofold symmetry
axis entails that to each longitudinal normal which lies
out of the plane OXY (n(1)

l , n
(2)
l , n

(3)
l ), there corresponds

a propagation direction (−n
(1)
l ,−n

(2)
l , n

(3)
l ). This means

that the number of longitudinal normals lying outside the
plane OXY has to be odd.

5 Monoclinic media: Longitudinal normals
lying in the symmetry plane

The solution of the problem of longitudinal normals lying
in symmetry planes is well known [9]. We discuss it here
only for the reason of completeness. The plane n3 = 0 will
contain longitudinal normal with coordinates [n1, n2, 0],
if, and only if, equations (2a, b) are fulfilled, i.e. if

[n(1)
l , n

(2)
l , 0] =

 1
c2

2∑
j=1

Γ1jn
(j)
l ,

1
c2

2∑
j=1

Γ2jn
(j)
l ,

1
c2

2∑
j=1

Γ3jn
(j)
l


 . (17)

This is equivalent to the following set of equations

2∑
j=1

Γ3jn
(j)
l = 0,




2∑
j=1

Γ2jn
(j)
l


n

(1)
l =




2∑
j=1

Γ1jn
(j)
l


 n

(2)
l . (18a, b)

For monoclinic media, equation (18a) is a trivial iden-
tity. This means that for monoclinic media one should
find roots of a quartic polynomial

C26

(
n

(2)
l

)4

+ (2C66 − C22 + C12)
(
n

(2)
l

)3

n
(1)
l

+ (3C16 − 3C26)
(
n

(2)
l

)2 (
n

(1)
l

)2

+ (C11 − 2C66 − C12)n
(2)
l

(
n

(1)
l

)3

−C16

(
n

(1)
l

)4

= 0.

(19)

Thus, the maximal number of longitudinal normals lying
in the OXY plane is 4. This means that in the case of
monoclinic media, in spite of the claim of Khatkevich [9],
the total number of longitudinal normals can not be larger
than 13.

6 Determination of longitudinal normals
for monoclinic media

Until now we discussed the general problem of the number
of longitudinal normals for monoclinic media. One may
check that for monoclinic media equation (7) takes the
form

Emonocl(y) = y
(
B0 + B2y

2 + B4y
4 + B6y

6 + B8y
8
)

= 0,
(20)

where B0, B2, B4, B6, B8 are complicated polynomial
functions of medium elastic constants of the sixth de-
gree. We obtained their explicit form with the help of
the Symbolic Computation System Maple. From equa-
tion (20), one sees that the value y = 0 is always the
solution of equation (20). The components n

(1)
l , n

(2)
l of

the directions of the remaining longitudinal axes are de-
termined by solving the equation

(
B0 + B2z + B4z

2 + B6z
3 + B8z

4
)

= 0, (21)

where z ≡ y2.
The equation (21) is quartic, so it can be analytically

solved, though as a rule, the appropriate analytic expres-
sions are rather complicated. After substitution of the cal-
culated roots into equations (15a, b), one obtains two cu-
bic equations. Thus, generally, it is possible to obtain a
closed-form expressions for directions of longitudinal nor-
mals for an arbitrary monoclinic medium.

Consider the solution y = 0 of equation (20). For this
value of y, equations (15a, b) become

[
(C13 − C33 + 2C55) + (C11 − C13 − 2C55)x2

]
x = 0,

C16x
3 = 0. (22a, b)

The solution (x = 0, y = 0) corresponds to longitudinal
normal directed along the symmetry axis. The solution
x �= 0 of equations (22) exists when elastic constants obey
three conditions

C16 = 0, C33 = C11, C55 = (C11 − C13)/2. (23a-c)
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We shall illustrate the described procedure on the ex-
ample of monoclinic crystal of CDP (CsH2PO4), for which
the matrix of elastic constants has the following form [16]:

ĈCDP =




28.83 11.4 42.87 0 0 5.13

11.4 26.67 14.5 0 0 8.4

42.87 14.5 65.45 0 0 7.5

0 0 0 8.1 −2.25 0

0 0 0 −2.25 5.2 0

5.13 8.4 7.5 0 0 9.17




·

(24)

Units in which Cij are expressed do not matter.
For the matrix ĈCDP , equation (21) could be written

in the following form;

0.05 + 274.1z + 83.26z2 + 135.3z3 + 6.07z4 = 0. (25)

All roots of equation (25) are complex or negative. Thus,
the only solution having the physical meaning is y = 0.
This means that CDP has longitudinal normals lying in
the plane OXZ. For y = 0 equation (15a) is a trivial
identity, while equation (15b) becomes

(7.5 + 5.13x2)x = 0. (26)

The only real solution of equation (26) is x = 0, so the
only longitudinal normal lying outside the plane OXY has
components [0, 0, 1].

By solving equation (19) for the matrix of elastic con-
stants ĈCDP , we can find longitudinal normals lying in-
side the plane of symmetry. The corresponding vectors nl

have components [0.5858, –0.8105, 0], [0.6579, 0.7531, 0].
We conclude that CDP crystal provides the example of
monoclinic medium which has just 3 longitudinal normals.
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